Introduction to Geometry (Autumn Term 2012) Exercises 2

Section A

1. Show that if $A B$ and $C D$ are arcs of great circles on the sphere, and have the same length, then there is an isometry of the sphere taking taking $A B$ to $C D$.
2. (i) Find a spherical triangle with angle sum $3 \pi / 2$.
(ii) Find a spherical triangle with angle sum greater than 2π.
(iii) How big can you make the angle sum in a spherical triangle?

Many of the exercises from here and onwards make use of Exercise 2 on Exercise Sheet 1.
3. Show that the angle $\angle A C B$ in the leftmost diagram in Figure 2 below (where O is the centre of the circle) is a right-angle.

Section B

4. Two triangles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are similar if $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$ and $\angle C=\angle C^{\prime}$. Find two pairs of similar triangles in Figure 1 below, and prove that they are similar.

Figure 1
5. (i) In the middle diagram in Figure $2, O$ is the centre of the circle. Show that if $\angle A D B$ is a right-angle, then D in fact lies on the circle. Hint: continue $A D$ until it meets the circle at, say, D^{\prime}. What can you say about $\angle A D^{\prime} B$?
(ii) Show that opposite angles in a cyclic quadrilateral (e.g. $\angle R Q P$ and $\angle P S R$ in the rightmost diagram in Figure 2) add up to π.

Figure 2
6. Show that $\angle P T A=\angle P Q T$ in Figure 3 below:

Figure 3
7. Explain how to find a circle passing through three given points on a sphere. Justify your procedure as far as you are able.

Section C

8. If opposite angles in a quadrilateral add up to π, do its four vertices all lie on the same circle? Give a proof or a counter-example.
9. (i) In Exercises 1 we showed that every isometry of the plane is the composite of no more than 3 reflections. How many reflections are needed to obtain a rotation? And a translation?
(ii) Find an isometry of the plane which is not a reflection, a translation or a rotation.
(iii) Suppose that f is an isometry of the plane. How could you tell, by looking at a triangle and its image under f, whether f is the composite of an odd or an even number of reflections?
